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Abstract 9 

 10 

Quantification of uncertainty in surface mass change signals derived from GPS measurements poses 11 

challenges, especially when dealing with large data sets with continental or global coverage. We present a 12 

new GPS station displacement data set that reflect surface mass load signals and their uncertainties. We 13 

assess the structure and quantify the uncertainty of vertical land displacement derived from 3045 GPS 14 

stations distributed across the continental US. Monthly means of daily positions are available for 15 15 

years. We list the required corrections to isolate surface mass signals in GPS estimates and screen the data 16 

using GRACE(-FO) as external validation. Evaluation of GPS timeseries is a critical step, which 17 

identifies a) corrections that were missed; b) sites that contain non-elastic signals (e.g., close to aquifers); 18 

and c) sites affected by background modelling errors (e.g., errors in the glacial isostatic model). Finally, 19 

we quantify uncertainty of GPS vertical land displacement (VLD) estimates through stochastic modeling 20 

and quantification of spatially correlated errors. Our aim is to assign weights to GPS estimates of VLD, 21 

which will be used in a joint solution with GRACE(-FO). We prescribe white, colored and spatially 22 

correlated noise. To quantify spatially correlated noise, we build on the common mode imaging approach 23 

adding a geophysical constraint (i.e., surface hydrology) to derive an error estimate for the surface mass 24 

signal. We study the uncertainty derived using each technique and find that three techniques exhibit an 25 

average noise level between 2-3 mm: white noise, flicker noise, and RMS of residuals about a seasonality 26 

and trend fit. Prescribing random walk noise increases the error level such that half of the stations have 27 

noise > 4 mm, which is systematic with the noise level derived through modeling of spatial correlated 28 

noise.  The new data set is suitable for use in a future joint solution with GRACE(-FO)-like observations. 29 

 30 

Keywords:  GPS uncertainty | vertical land displacement | GRACE-FO | surface mass change 31 

 32 

1. Introduction 33 

 34 

For more than two decades, the Gravity Recovery and Climate Experiment (GRACE) space gravity 35 

mission and its nearly identical successor mission, GRACE-Follow on (GRACE-FO), have provided 36 

mass change estimates through tracking the time-variable part of the Earth’s gravity field (Landerer et al., 37 

2020). Mass change products are typically given on a monthly basis and have been used to study a variety 38 

of critical climate-related factors (Tapley et al., 2019), such as sea level rise (Frederikse et al., 2020); ice 39 
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mass change (Velicogna et al., 2020); prolonged drought periods (Thomas et al., 2014) and regional flood 40 

potentials (Reager et al., 2014). The measurement geometry of GRACE(-FO) limits the study of 41 

geophysical processes to spatial scales of ~300 km and larger, for monthly timespans. Recent community 42 

reports (Pail et al., 2015, Wiese et al., 2022) have highlighted the utility and need of mass change 43 

observations at improved spatial resolutions to address a number of science and applications objectives.  44 

Examples include closure of the terrestrial water budget for small to medium sized river basins, and 45 

separation of surface mass balance from ice dynamic processes at the scale of individual outlet glacier 46 

systems.   47 

The spatial resolution of gravity maps derived from satellite measurements is limited by sampling at 48 

altitude. Fusion with external geodetic data sources, however, can improve spatial resolution over what 49 

can be achieved only with satellite gravimetry. GPS position timeseries have been used widely to study 50 

the elastic response of Earth’s surface to mass loading (e.g., Argus et al., 2017; Fu and Freymueller, 51 

2012) and can provide information at short wavelengths (~100km) (Argus et al., 2021).  Solid Earth 52 

responds elastically to changes in the surface load of water, snow, ice, and atmosphere. When the Earth’s 53 

surface is loaded with mass (e.g., snow and water) it subsides; and when mass loads are removed the 54 

surface rises. Thus, the Earth’s response follows the water cycles such that: precipitation and snow 55 

accumulation subside the surface and snow melt, evaporation and water run off allow the Earth’s surface 56 

to bounce back (uplift). Focus is typically placed on the radial direction (vertical), due to the rapid 57 

decrease of vertical land displacement (VLD) with the distance from a surface load (Argus et al., 2017), 58 

which leads to high fidelity estimates in the space domain. Note that across certain geological formations 59 

such as aquifers, subduction zones and regions with volcanic activity surface loading is mixed with other 60 

solid Earth/geophysical processes making it difficult to isolate the elastic component. Therefore, GPS 61 

sites located at the vicinity of such formations are omitted from further analyses. 62 

GPS VLDs (i.e., displacement between two epochs) have many different signals embedded in them; i.e., 63 

those related to atmospheric and oceanic loading, solid Earth phenomena such as tectonics, glacial 64 

isostatic adjustment (GIA), and others related to surface mass changes.  With the proper treatment (see 65 

Sec.2) GPS stations can capture local surface mass changes. We are interested in isolating the signals that 66 

reflect the Earth’s elastic response to mass variations, thus we apply a set of corrections to GPS VLD 67 

estimates, and then we screen the data for outliers or potential errors. The data screening process checks 68 

for consistency between GPS and GRACE(-FO) VLD estimates (similar analysis has been performed by 69 

Yin et al., 2020; Blewitt et al., 2001; van Dam et al., 2001; Becker and Bevis, 2004; Davis, 2004; 70 

Tregoning et al., 2009; Tsai, 2011 and Chew et al., 2014) and identifies outliers that statistical tests fail to 71 

pick up (He et al., 2018).  72 

The last step is to estimate uncertainty in the screened data set. Since our purpose is to isolate surface 73 

mass load signals, we define error as any VLD signal that does not reflect an elastic surface mass load. 74 

The reported uncertainty of a measurement reflects the sum of all error sources to the measurement, and is 75 

the final product of this study. Error correlation (temporal and spatial) and the deficiency of stochastic 76 

noise models to describe the error realistically are the main challenges in this uncertainty quantification 77 

task.   78 

Error sources include errors driven by satellite antenna phase centre offsets (Santamaria-Gomez et al., 79 

2012); atmospheric pressure models (Kumar et al., 2020); non-tidal ocean loading (Jiang et al., 2013); 80 

satellite orbits (Ray et al., 2008; Amiri-Simkooei ,2013); earth orientation parameters (Rodriguez-Solano 81 

et al., 2014); and tectonic trends and post-seismic relaxation after earthquake activity (Ji and Herring, 82 

2013; Crowell et al., 2016).  83 
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Most of these errors are also spatially coherent, and their sum is usually referred to as common-mode 84 

noise (CMN) (Kreemer and Blewitt; 2021). Mitigation of CMN is usually done by means of spatial 85 

filtering (Wdowinski et al. 1997), a technique that needs to be applied with caution, due to the 86 

assumptions made when applying a spatial filter (see e.g., Williams, 2004; Tian and Shen 2016).  87 

Recent developments of spatial filtering algorithms include principal component analysis (PCA) or 88 

independent component analysis (ICA). PCA decomposes residual time-series (relative to a deterministic 89 

model) into various principal/independent components based on their variance and identifies the 90 

components that reflect CMN (Serpelloni et al., 2013; Li and Shen, 2018). ICA is different than PCA in 91 

that it finds the maximum independence of the components instead of minimum correlation (Milliner et 92 

al., 2019; Liu et al., 2015). One of the main limitations of PCA/ICA is their susceptibility to dismiss 93 

CMN reflected in a relatively small number of stations. Therefore, in many occasions a subset of stations 94 

is studied independently (Wu et al., 2019). 95 

Considering the increased number of GPS stations and the limitations posed by the existing 96 

methodologies, Kreemer and Blewitt (2021) developed a robust methodology to estimate the common 97 

spatial components of GPS residuals (i.e., the remaining signals of a time-series after subtraction of a 98 

deterministic model). The so-called common mode component (CMC) imaging technique quantifies the 99 

spatial correlation of the residuals (position or VLD time-series anomaly with respect to a deterministic 100 

model) of unequal-length time-series using information from neighbor stations. It is important to note that 101 

CMC reflects both spatially correlated noise and spatially correlated signals, including elastic 102 

displacements, that a deterministic model fails to describe. 103 

Spectral analysis of the residuals (with respect to a deterministic model, see Eq.2) is an alternative way to 104 

estimate the noise level of VLD series for each GPS station. The spectrum of the residuals can be 105 

approximated by white or colored noise (flicker, random walk, power law approximation, generalized 106 

gauss markov etc.), or by a combination of white and colored noise (Williams et al., 2004; Bos et al., 107 

2008; Klos et al., 2014). A summary of the different noise models and their power distribution can be 108 

found in He et al. (2018). Several standard GPS time series analysis packages are available to perform 109 

such an analysis, e.g., CATS (Williams, 2008) and Hector (Bos et al. 2013). Various studies in the past 110 

suggested that the residuals are better described by a combination of white and flicker noise (see e.g., 111 

Klos et al., 2014; Argus et al., 2017), with the latter contributing the most (Argus and Peltier, 2010). 112 

Recently, Argus et al. (2022), showed that the longer the timeseries the more the spectrum of GPS 113 

residuals converges with the noise model of random walk.  114 

 115 

In this contribution, we outline a comprehensive framework for processing large data sets (continental 116 

and/or global) of GPS VLD timeseries, to derive VLD estimates that only reflect surface mass signals, for 117 

use in a joint inversion with GRACE(-FO) measurements. Originally, we layout the corrections required 118 

to capture local surface mass changes (Section 2.1). Our interest is to make the process as automated as 119 

possible, thus we set a number of evaluation metrics to detect outliers among all candidate (for the joint 120 

inversion) sites. Stations flagged as outliers are further evaluated for extra corrections (e.g., offsets; poor 121 

site maintenance etc.). Finally, we assign weights to each GPS VLD record. We test the most popular 122 

methodologies to quantify the error, considering time-correlation, spatial-correlation and/or white noise 123 

(Section 3). Note that for spatially correlated noise the commonly used PCA/ICA is not as applicable to 124 

our use case, because our data set extends over very large spatial areas (continental). CMC imaging 125 

(Kreemer and Blewitt; 2020) fits our needs better. We overcome CMC’s limitation of include spatially 126 

correlated hydrology signals in the error estimate by deriving surface loading signals from a hydrology 127 
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model and removing them. The final product is a new data set with GPS VLD estimates that reflect elastic 128 

mass variations and their uncertainties. 129 

2. GPS data processing and screening 130 

 131 

2.1 Isolating surface mass loading fingerprint from GPS VLD  132 

 133 

The 3054 GPS position time-series used in this study are a product of Jet Propulsion Laboratory (JPL) 134 

(Bertiger et al., 2020) and Nevada Geodetic Laboratory reprocessed GPS solutions (Blewitt et al., 2018). 135 

GPS satellite orbits, clocks, and core site positions are estimated consistently using the latest techniques 136 

and GipsyX software (Bertiger et al., 2020). Displacement signals driven by solid earth, oceanic and pole 137 

tides are corrected according to International Earth Rotation Service (IERS) standards.  138 

We process the GPS series similar to Argus et al. (2017; 2022), that is, we correct for atmospheric loading 139 

signals using the ECMWF weather model (Simmons et al., 2007) and for GIA, using the ICE-6G_D 140 

model (Peltier et al., 2018). GIA modelling errors affect GPS and GRACE(-FO) VLD predictions in 141 

opposite sense. Overestimation of GIA translates to subsidence when we correct GPS. The same 142 

overestimation predicts too much mass gain and shows as water loss when we correct GRACE(-FO), 143 

which eventually translates to land uplift. The same analogy applies to underestimation of GIA, which is 144 

mapped as uplift on GPS and as subsidence on GRACE(-FO) VLD predictions. 145 

Estimates prior to or after a significant earthquake event, or biased by a significant post-seismic transient 146 

are discarded. Stations with non-elastic response (e.g., porous) located at aquifers, volcanically active 147 

regions and oil extraction sites are also removed from the data record (see Argus et al. (2017) for details). 148 

An interseismic strain accumulation correction across the Cascadia is also applied (Argus et al., 2021). 149 

The model (Li et al. 2018) consists of both elastic and viscous components (2/3 elastic and 1/3 viscous). 150 

All estimates are given in the International Terrestrial Reference Frame 2014 (Altamimi et al., 2016). 151 

Finally, we solve for and remove an offset (Argus et al., 2010) if an estimated offset is greater than 8 mm 152 

in the radial direction. In most cases, estimating the offset reduces the root mean square dispersion (in 153 

mm) of the position estimates about a fit of the position, velocity and sinusoid with an annual frequency, 154 

by more than 5 percent. Daily solutions are averaged into monthly means, and are available for different 155 

durations over a span of fifteen years starting from 2006.  156 

To compare GPS with GRACE(-FO) VLD estimates we reference all VLD data to the epoch with the 157 

most GPS site records, which is September 2012. This process results in an 11% loss of stations (i.e., no 158 

available measurement on 09/2012). Similar to Yin et al. (2020), detrended monthly estimates of each 159 

station that are larger than 3σ relative to the mean of the time-series are considered outliers and removed 160 

from the data set. Statistical outliers comprise ~0.5% of the records.  161 

2705 (or 88.8%) of GPS stations remain after the choice of reference epoch, the 3σ test and the removal 162 

of sites with non-elastic loading response. The distribution of sites is denser along the East and West 163 

coasts, and fairly sparse in the central-north US (Fig.1). Series of two arbitrary stations (hivi and njwt) 164 

located at the West and East coast respectively, are shown in Fig. 1. The response of the Earth on the 165 

extensive drought period in California between 2011.5-2015.5 is captured in the uplift trend mapped by 166 

hivi station (Fig.1, top right panel; dashed blue line).  167 
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 168 
Figure 1: Left panel) Map of study area. GPS stations are shown in yellow; Right panel) Vertical 169 

displacement timeseries of two random stations (red line). Solid blue line denotes the overall trend of the 170 

timeseries and dashed blue line the trend between (2011.5-2015.5). Note the significant uplift of the hivi 171 

station located in southern California. 172 

 173 

2.2 External validation data sets - Time-variable gravity field 174 

 175 

We employ GRACE(-FO) mascon solutions developed at the Jet Propulsion Laboratory that resolve mass 176 

changes using 3-degree spherical cap basis functions (Wiese et al., 2016; Watkins et al., 2015) as a 177 

validation tool for the GPS data. The effect of postglacial rebound is removed from GRACE(-FO) 178 

products using ICE-6G_D model estimates (Peltier et al., 2017). The geocentre motion (degree 1) 179 

coefficient is replaced with the estimated coefficient from Sun et al. (2016), using TN-13.  The Earth’s 180 

oblateness coefficient (C20) is replaced by an estimate derived from Satellite Laser Ranging observations 181 

for all months (Loomis et al., 2019), as is the C30 coefficient for all months after August 2016, due to 182 

only having a single functioning accelerometer. GPS position timeseries do not include the linear trend of 183 

the geocentre motion (i.e., the linear trend of the ITRF14 frame is approximately zero, Altamimi et al. 184 

(2014)), as opposed to GRACE(-FO), thus we remove it from GRACE(-FO). The annual signal of the 185 

geocentre (as realized by ITRF14) projected on the up component in north America can explain up to 186 

20% of the GPS VLD signal.  187 

GRACE(-FO) VLD monthly estimates are derived as follows (e.g., Davis et al., 2004): 188 

 189 

𝑈(𝜙, 𝜆) = 𝑎 ∑ (
ℎ𝑙

𝐸

1 + 𝑘𝑙
𝐸)

𝑙,𝑚

𝑃𝑙𝑚(𝑠𝑖𝑛𝜆) × [𝐶𝑙𝑚𝑐𝑜𝑠𝑚𝜙 + 𝑆𝑙𝑚𝑠𝑖𝑛𝑚𝜙] 
 

(1) 

 190 

Where, 𝑈 is the estimate of vertical displacement, 𝑎 denotes the Earth’s radius, 𝜙, 𝜆 denote the latitude 191 

and longitude, respectively; are the associated Legendre polynomials, and are the elastic and vertical Love 192 

numbers (PREM; Wang et al., 2012), respectively, and 𝐶 and 𝑆 are the spherical harmonic coefficients 193 

derived from GRACE(-FO) monthly solutions with respect to degree 𝑙 and order 𝑚. Similar to GPS, we 194 

subtract September 2012 values from the rest of the series for a common reference basis. 195 

 196 
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2.3 Screening metrics 197 

 198 

GPS VLD estimates are evaluated against the ones derived from GRACE(-FO), to assist in identifying 199 

outliers or further corrections that may be needed. We employ a number of different metrics to evaluate 200 

the agreement between the two data sets, and to determine whether to include it in the joint solution or 201 

not. Similar to Yin et al. (2020) we quantify correlation and variance reduction between GPS and 202 

GRACE(-FO) VLDs. The structure of surface mass periodic signals (e.g., annual cycles, trends) as picked 203 

up by the two measurement platforms, also entails critical information regarding mismodelled offsets, and 204 

is evaluated as well.  205 

This process flags sites that need correction and corroborates joint inversion’s hypothesis (Argus et al., 206 

2021), that a basic level of agreement is needed for the GPS data to be used to infer surface mass change. 207 

 208 

 209 

Correlation 210 

 211 

First, we specify the level of agreement between the data sets by estimating the Pearson correlation 212 

coefficient between GPS & GRACE(-FO) VLD timeseries.  On average the correlation is 62%, but 213 

stations located on the West coast exhibit an agreement higher than 80%, which in most cases is driven by 214 

the larger annual signal amplitude. A more detailed look into the correlation metric is performed to 215 

evaluate the agreement of GPS/GRACE(-FO) in retrieving the seasonal cycle amplitude in different 216 

watersheds.  We fit and remove a deterministic model 𝑦(𝑡): 217 

 218 

𝑦 = 𝑎 + 𝑏𝑡 + 𝐴 + 𝐵𝑐𝑜𝑠(2𝜋𝑡), (2) 

 219 

with 𝑎 being the intercept; 𝑏 being the trend and 𝐴 and 𝐵 being the amplitude and phase of a periodic 220 

function with annual frequency.  221 

 222 

We classify stations in watersheds and plot the GPS-GRACE(-FO) correlation coefficient (R) of each 223 

station in different watershed against the amplitude of annual signals (Fig. 2b).  To quantify the 224 

relationship between magnitude of the annual cycle and correlation between the two data sets we fit a 225 

linear function between the magnitude of the annual signals and the GPS-GRACE(-FO) VLD correlations 226 

for each watershed, separately. A steep slope (𝒂) of the fit (𝒂>0.5) indicates an agreement between the 227 

two data sets, which depends on the magnitude of the annual cycle. This relationship breaks when stations 228 

of a basin exhibit smaller annual cycles.  We discuss an interesting case in Supplements, where stations 229 

located in the St. Lawrence basin demonstrate a negative trend 𝒂 = −1.26. The disagreement is even 230 

more pronounced while assessing the second metric (i.e., trends). Both metrics, when taken together, 231 

helped us identify the source problem (i.e., unlogged offset) and take corrective actions (see Supplements 232 

for more details). Note that for Figs. 2 and 3 the corrected data were used. 233 

 234 

 235 
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 236 
 237 

Figure 2: a) GPS sites clusters at watersheds in the US. Each watershed has a different color; b) 238 

Magnitude of annual GPS VLD cycles derived with respect to GPS-GRACE(-FO) correlation; c) Linear 239 

fit between magnitude of the annual GPS VLD cycles and GPS-GRACE(-FO) correlation.  240 

 241 
Trends  242 

 243 

In order to study the agreement between GPS/GRACE(-FO) in more detail, we split the timeseries of each 244 

station into non-overlapping intervals of 36 months, and fit Eq.2 for each station during each time-245 

window. Different time-lengths of the GPS series may lead to misinterpretation of the geophysical 246 

content. For example, a station that has records only for the first 13 months out of the total of 36 months 247 

window may reflect different fit constituents compared to a neighbor station with full records, if the 248 

actual behavior of Earth’s response changes during the 36-months window. Although in our data set this 249 

case is fairly rare, we proceed with deriving the rate (slope) and the annual cycles only for stations that 250 
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have records for at least 28 out of the 36 months. As expected, GPS rates feature higher spatial variability 251 

than GRACE(-FO). However, both platforms capture large-scale quasi-periodic variations every 3 years 252 

(Fig. 3), an agreement that is noteworthy. The effect of this metric to detect outliers is pronounced when 253 

the two platforms show flipped trends.  254 

 255 

Regions with pronounced trend disagreement:  256 

• Great Lakes area (St. Lawrence watershed). The trend during 2015-2018 was flipped between 257 

GPS and GRACE(-FO). We discovered a missed offset in the series occurring in April 2016, and 258 

corrected for it, which the agreement in the trend (see Supplements). 259 

• Cascadia region (northwest coast). The disagreement is evident in maps spanning 2009-2012, 260 

2015-2018 and 2018-2021.5. GPS sites record a large surface uplift, which over the course of 15 261 

years sums to 60 mm in sites located in Vancouver Island. GRACE(-FO) does not capture any 262 

such behavior. We attribute this disagreement partly on 1) GIA modeling error which manifests 263 

oppositely on two platforms. ICE6G_D predicts too much subsidence, thus when we correct GPS 264 

we find too much uplift and when we correct GRACE(-FO) we find too much water gain which 265 

predicts too much subsidence; and partly on 2) the interseismic strain accumulation correction 266 

applied in the GPS data set over this area (Argus et al., 2021). The sites have been flagged and are 267 

not going to be used in the joint inversion. 268 

• San Andreas Fault (Southern California). Sites located in a vicinity of the Parkfield segment of 269 

the fault (Carrizon plain), exhibit consistent disagreement in the trend. More investigation is 270 

required to understand the mechanism that the fault presents on GPS/GRACE(-FO) VLD 271 

estimates. The disagreement is also seen in Argus et al. (2022, Fig. S12). The sites have been 272 

flagged and are not going to be used in the joint inversion. 273 

 274 
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 275 
Figure 3: Rates of vertical displacements derived by GPS and GRACE. The rates are calculated every 36-276 

months (3 years) between 2006-2021. 277 

 278 
 279 
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Variance Reduction 280 

 281 

Similarity in both amplitude and phase between two quantities is quantified via the variance attenuation 282 

factor (Gaspar and Wunsch, 1989; Fukumori et al., 2015):  283 

 284 

𝑣𝑎𝑟𝑟𝑒𝑑 = (1 −
𝑣𝑎𝑟(𝐺𝑃𝑆 − 𝐺𝑅𝐴𝐶𝐸(−𝐹𝑂))

𝑣𝑎𝑟(𝐺𝑃𝑆)
) × 100 

 

(3) 

 285 

The higher the agreement in phase and amplitude between GPS and GRACE(-FO), the closer the metric 286 

gets to 100%. 𝑣𝑎𝑟𝑟𝑒𝑑 may also be negative when the differences in amplitude and/or phase are large. 287 

Overall, GPS and GRACE(-FO) are consistent when 𝑣𝑎𝑟𝑟𝑒𝑑 exceeds 50%. The areas of main 288 

disagreement are near coasts, especially along the Atlantic Ocean. This inconsistency can be partly 289 

explained by modeling errors of the non-tidal oceanic and atmospheric loading model (e.g., Klos et al., 290 

2021; van Dam et al., 2007). Additionally, agreement is poor for sites located in the vicinity of the 291 

Parkfield segment (specific regions across the fault perform poorly), which is consistent with the 292 

disagreement shown in Fig. 3.  293 

 294 

 295 

Figure 4: Variance reduction between GPS and GRACE(-FO) VLD 296 

 297 
We also compared the amplitudes of GPS and GRACE(-FO) VLD periodic cycles. This analysis was not 298 

informative for the presence of outliers or errors.  299 

 300 

Overall, the screening process not only assisted in outlier detection, but it also allowed for a deeper look 301 
into the structure of VLD periodic signals. We identified the need for antenna offset corrections (in the 302 
case of Great Lakes); removed sites affected by GIA and interseismic modeling errors; and sites located at 303 
the Parkfield segment of San Andreas Fault. 304 
 305 

 306 

 307 
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3. Uncertainty Quantification 308 

 309 

With the updated data set we are now ready to proceed with the uncertainty quantification of the GPS 310 

VLD timeseries. We apply different error characterization schemes consisting of a root sum square of a 311 

random error, white noise error, power law noise error (flicker noise and random walk) and spatially 312 

coherent error.  313 

 314 

3.1 Methods 315 

 316 

Root Mean Square Error  317 

 318 

Residuals 𝑟 of a series with respect to a deterministic model (Eq. 2) are often used as a first 319 

approximation of noise in VLD series (e.g., Bos et al., 2013; Michel et al., 2021). Practically, 𝑟 shows 320 

how well a deterministic model can describe the original time-series. Therefore, the root mean square 321 

(rms) of 𝑟 can give a first approximation of the noise floor of each station.  322 

 323 

Spectral Analysis, White, Flicker and Random Walk Noise 324 

 325 

Power distribution of residuals and its agreement with noise models, is another popular way to quantify 326 

uncertainty of GPS time-series (e.g., Klos et al., 2019; Argus et al., 2022). Typically, GPS series are 327 

evaluated for white, flicker and random walk noise, or combination of them. The Hector software (Bos et 328 

al., 2013) is used to estimate full noise covariance information by means of a maximum likelihood 329 

estimator. The covariance matrix 𝐶 from a combination of white and power law (i.e., flicker and random 330 

walk) noise is given as:  331 

 332 

𝐶 = 𝑎 × 𝐈 +  𝑏 × 𝑱 Eq. 4 

 333 

Where 𝑎 is the amplitude of white noise, 𝑰 is the identity matrix of size N (number of samples/epochs in 334 

the series), 𝑏 is the amplitude and 𝑱 the covariance matrix of power law noise. 𝑱 matrix is a full 335 

covariance matrix that describes the time-correlated error (as the data record length increases, the 336 

displacement uncertainty changes (Bos et al., 2008 Eqs. 8-11)). The optimal selection of the noise models 337 

is done via two optimality criteria, namely the Akaike Information Criterion (Akaike, 1974) and the 338 

Bayesian Criterion (Schwarz, 1978). 339 

 340 

In this study, we consider three cases: 341 

a) White Noise (WN) 342 

b) Combination of WN and Flicker Noise (WN+FN) 343 

c) Combination of WN, FN and Random Walk Noise (WN+FN+RW) 344 

We take the root-sum-squares of the noise magnitudes as our noise floor. For example, for the case of 345 

WN+FN noise, noise is derived as 𝜎 = ±√𝜎𝑊𝑁
2 + 𝜎𝐹𝑁

2 . Our data are sampled on a monthly basis, thus 346 

https://doi.org/10.5194/essd-2023-183
Preprint. Discussion started: 4 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 12 

𝜎𝐹𝑁 needs to be scaled appropriately, i.e., 𝜎𝐹𝑁 = 𝜎𝑃𝐿(
1

12
)−

𝑘

4, where, 𝜎𝑃𝐿 is the uncertainty of power-law 347 

(PL) and 𝑘 the spectral index, outputted from Hector (more information on power-law noise estimation 348 

can be found in Bos et al., 2008, and Williams, 2003).  349 

 350 

Common Mode Noise 351 

 352 

The Common Mode Component (CMC) is derived following the processing scheme suggested by 353 

Kreemer and Blewitt (2021), which can be summarized as: 354 

 355 

1) Input GPS VLD time-series (referenced to Sep 2012) for 𝑗 stations (𝑙𝑗) 356 

2) Derive each station’s residuals by removing the deterministic part of the series (𝑙𝑗(𝑡) − 𝑦𝑗(𝑡)) 357 

3) Quantify the correlation coefficient 𝑟𝑀𝐴𝐷 using robust statistics. 𝑟𝑀𝐴𝐷 is defined as:  358 

𝑟𝑀𝐴𝐷 =
𝑀𝐴𝐷2(𝑢) − 𝑀𝐴𝐷2(𝑣)

𝑀𝐴𝐷2(𝑢) + 𝑀𝐴𝐷2(𝑣)
 Eq. 5 

 359 

where MAD is the median absolute value and 𝑢 and 𝑣 are derived as: 360 

𝑢 =
𝑝 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑝)

√2𝑀𝐴𝐷(𝑝)
+

𝑞 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑞)

√2𝑀𝐴𝐷(𝑞)
 Eq. 6 

𝑣 =
𝑝 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑝)

√2𝑀𝐴𝐷(𝑝)
−

𝑞 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑞)

√2𝑀𝐴𝐷(𝑞)
 Eq. 7 

 361 

with 𝑝 and 𝑞 being the residual series of the reference station and the neighbor station, respectively. 362 

For each station there are 𝑗 − 1 correlation coefficients 𝑟𝑀𝐴𝐷. In order to decide the cut-off distance 363 

that a neighbor station will be considered in the analysis we plot 𝑟𝑀𝐴𝐷 coefficient against its distance 364 

from the reference station (Fig. 5). Based on results from all stations we decide to set a cut-off at 1500 365 

km, slightly higher than the 1350 km suggested by Kreemer and Blewitt (2021). The 1500 km cut-off 366 

allows us to separate stations between east and west coast, as spatially coherent signals at stations 367 

located across the continent are negligible. 368 

4) Derive the median slope estimator 𝑐𝑐𝑠 using Theil-Sen median trend.  369 

5) Derive the zero-distance intercept 𝑐𝑐𝑖𝑗  for each station as median(𝑟𝑀𝐴𝐷 − 𝑐𝑐𝑠 ∗ 𝑑), with 𝑑 being the 370 

distance between the station of reference and the neighbor station (maximum 𝑑 = 1500 km). 371 

https://doi.org/10.5194/essd-2023-183
Preprint. Discussion started: 4 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 13 

6) Construct CMC: Calculate the cumulative (𝑐𝑗) and percentile (𝑝𝑗) weights for each station and then 372 

find the weighted median that corresponds to 𝑝𝑗  = 50%. This weighted median represents the CMC of 373 

the station (Fig. 6).  374 

 375 
Figure 5:  coefficient of four random stations with the rest of the station sample, plotted against the 376 

distance of the reference station with the rest of the stations. Each cross resembles the of the reference 377 

station with a station located at distance 𝑑. 378 

 379 

CMC is limited in providing a realistic error approximation, in that the technique cannot isolate spatially 380 

correlated noise from signal (e.g., hydrology signals not described by the deterministic model are present 381 

in the residuals fed into CMC). Under the realistic assumption that a component of the high frequency 382 

signal contained in CMC reflects real hydrological processes, we remove the contribution of surface 383 

hydrology using Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) VLD predictions. 384 

GLDAS does not model deep groundwater and open surface water, so these signals remain in the residual 385 

(Scanlon et al., 2018). VLD predictions driven by surface hydrology are derived similar to GRACE(-FO) 386 

(Section 2.2). We use Noah v2.1 monthly estimates of soil moisture storage given at 0.25-degree grids 387 

(Beaudoing and Rodell, 2016), convert the fields from terrestrial water storage (kg/m2) to units of 388 

equivalent water height, and predict the elastic response of the Earth (Eq. 1).  Finally, we remove the 389 

reference epoch (09/2012) similar to GPS VLDs and derive the residuals relative to the deterministic 390 

model (Eq. 2). GLDAS (surface hydrology) residuals should ideally reflect high frequency hydrological 391 

processes and are therefore removed from GPS residuals. Overall, CMC of surface hydrology residuals 392 

exhibits a fairly small magnitude (~0.5 mm). We remove the contribution of surface hydrology within the 393 

CMC algorithm by first subtracting GLDAS VLD predictions from GPS, and next inputting the residuals 394 

of this difference into the algorithm. The output of this process (CMCHF) slightly decreases the magnitude 395 

of CMC and expresses a more realistic representation of spatially correlated noise.  396 

 397 

3.2 Results 398 

 399 
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VLD uncertainty of each station is estimated by means of all the different approaches discussed in Section 400 

3. The mean value and standard deviation are shown in Table 1. On average, an assumption of white 401 

noise shows slightly reduced uncertainty compared to the other techniques, followed by RMSE. When 402 

flicker noise is considered in addition to white noise (WN+FN) the average uncertainty increases by 403 

nearly 0.8 mm compared to the white noise only. Noise level from combination of all three noise models 404 

(WN+FN+RW) is somewhat less than 4 mm on average. CMC noise floor is 3.6 mm on average with a 405 

relatively large standard deviation (±1.6 mm) which suggests that spatially correlated noise has higher 406 

variability than time-correlated noise (± 1.6 mm as opposed to ~±1 mm). When surface hydrology is 407 

removed (CMCHF) the noise floor drops by a fraction of a mm on average compared to CMC.  408 

 409 

Table 1: Different uncertainty quantification cases 410 

 
μ (mm) median (mm) ± std (mm) 

RMSE 2.8 2.7 0.8 

WN 2.4 2.2 0.8 

WN+FN 3.2 3.1 0.7 

WN+FN+RW 3.8 3.5 1.1 

CMC 3.6 3.2 1.6 

CMCHF 3.5 3.1 1.6 

 411 

RMSE and WN exhibit a smooth transition among the regions, which indicates the presence of spatially 412 

coherent regime signal mostly driven by hydrology (Fig. 6). The combination of WN+FN is mostly 413 

dominated by FN and the uncertainty exhibits local (in space) coherence. The uncertainty is larger when 414 

random walk is included in the combination (WN+FN+RW). A recent study from Argus et al. (2022) on 415 

groundwater flux in Central Valley (California) suggests that noise on GPS-derived uplift motion can be 416 

well described by a combination of flicker noise and random walk, due to the ability of these noise 417 

models to reflect low frequency noise. When a simulated contribution of the surface hydrological 418 

component is removed from the series, CMCHF reflects a more realistic picture of the noise. Arguably the 419 

level of change compared to CMC is sub-millimeter. Signal contributions from un-modelled groundwater 420 

variations are potentially still present, but groundwater changes are typically slower in time.  421 

 422 

We obtain the relative likelihood of each uncertainty quantification method by estimating the probability 423 

density function (PDF) (Fig. 7).  White noise has a flat power spectrum, having the same amplitude 424 

across frequencies. Estimating a best fit for a flat spectrum doesn’t allow for capturing the long tail skew 425 

of the residuals (low frequency), which are biased towards their mean. Thus, the amplitude of white noise 426 

is smaller compared to the rest of the techniques (Table 1). Flicker and random walk noise models add to 427 

the long tail of the power distribution, that is they allow more low frequency noise, which explains the 428 

higher amplitude of the uncertainty when these two noise types are considered. 429 

RMSE and WN show a 50% probability of a station having an uncertainty (σ) between 1.5-2 mm and less 430 

than 10% of a station exceeding σ=4 mm. The noise level fells within [2 4] mm for ~93% of the stations 431 

when we consider combination of WN+FN. PDF of RMSE, WN and WN+FN resemble a normal 432 

distribution, with the mean being shifted for each case. When random walk is also considered 433 

(WN+FN+RW) 64% of the stations exhibit noise within [2 4] mm. In this case, the distribution is more 434 

spread resembling a gamma-like distribution, with a peak being at 3 mm (18%). CMC and CMCHF PDF 435 
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also follow a gamma-shape, and the probability of the uncertainty ranging between [2 4] mm is nearly 436 

60% for CMC and 65% when surface hydrology is removed.  437 

 438 

 439 
Figure 6: Uncertainty of GPS sites estimated using various techniques 440 

 441 
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 442 
Figure 7: Probability density function of VLD estimates uncertainty 443 

 444 

4. Discussion 445 

 446 

GPS VLD observations are very useful to supplement GRACE(-FO) gravity products to infer mass 447 

change signals at spatial scales smaller than what can typically be achieved with current satellite 448 

gravimetry alone (i.e., < 300km). This work provides a general workflow on isolating surface mass 449 

signals, developing processing standards and uncertainty quantification schemes of GPS VLD estimates, 450 

with the ultimate goal of merging them with satellite-gravimetry observations. First, we provide a list of 451 

corrections needed for isolating surface mass following recommendations outlined in Argus et al. (2017; 452 

2022). Additionally, detailed investigation of trends, correlation, and variance reduction, accentuates the 453 

need for better background modeling (GIA and interseismic strain), as the two observation platforms 454 

respond differently in the presence of such errors. At this point the recommendation is to remove sites 455 

located in the vicinity of regions where background models are known to perform poorly, before any joint 456 

inversion. Except detecting outlier stations, screening metrics point to extra corrections that need to be 457 

applied in certain sites (e.g., missed antenna offset in sites located in Michigan).  458 

Several uncertainty quantification schemes have been tested to prescribe weights on GPS VLD estimates 459 

for the joint inversion. The noise level is centered at 2 and 2.5 mm when uncertainty is derived as the 460 

RMSE of residuals or as white noise, respectively. Error increases when lower frequencies are included in 461 

the noise estimation. When we account for flicker noise, one third of the sites exhibits noise levels of up 462 

to 3 mm.  The average noise increases significantly in presence of random walk, as more power of the 463 

lower frequencies gets into the estimations, and the distribution of noise is more dispersed. In this case, 464 

half of the stations are prescribed with > 4 mm uncertainty. Argus et al. (2022), suggests that random 465 

walk is the most realistic representation of noise based on postfit residuals. We notice that the spectrum of 466 

CMC provides similar uncertainties to random walk, which implies that despite the different 467 

characterization procedure, CMC is able to provide equally realistic noise estimates of GPS VLD 468 

timeseries. We strived to minimize lingering hydrology signals embedded in CMC, through reducing the 469 

GPS VLD observations with VLD from the GLDAS hydrology model. The average noise floor dropped 470 

slightly (~0.5 mm drop in sigma). Future work will potentially provide further information of GPS station 471 

errors when the weight of each GPS site is also considered based on its impact on the performance in a 472 
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formal data combination of GPS-GRACE(-FO). The suggested framework can be easily adjusted to 473 

account for global data sets. The new data set provides GPS vertical displacements of elastic mass 474 

variations in North America and their uncertainties. 475 

 476 

Data Availability: The data product described in the manuscript is available in zenodo (doi: 477 
10.5281/zenodo.8184285). GPS timeseries are provided by the Global Station List from the Nevada 478 
Geodetic Laboratory (http://geodesy.unr.edu/; Blewitt et al., 2018). Non atmospheric and oceanic tidal 479 
aliasing product (AOD1B RL06) is provided by GFZ’s Information System and Data Center 480 
(ftp://isdc.gfz-potsdam.de/grace/Level-1B/GFZ/AOD/RL06, Dobslaw et al., 2017). GRACE and 481 
GRACE-FO Level 2 products are available from podaac (https://doi.org/10.5067/GFL20-MJ060).  482 
 483 
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